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a b s t r a c t

Maxwell’s rule from 1864 gives a necessary condition for a framework to be isostatic in 2D
or in 3D. Given a framework with point group symmetry, group representation theory is
exploited to provide further necessary conditions. This paper shows how, for an isostatic
framework, these conditions imply very simply stated restrictions on the numbers of those
structural components that are unshifted by the symmetry operations of the framework. In
particular, it turns out that an isostatic framework in 2D can belong to one of only six point
groups. Some conjectures and initial results are presented that would give sufficient con-
ditions (in both 2D and 3D) for a framework that is realized generically for a given symme-
try group to be an isostatic framework.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This paper deals with isostatic frameworks, i.e., pin-jointed bar assemblies, commonly referred to in engineering literature
as truss structures, that are both kinematically and statically determinate. Such systems are minimally infinitesimally rigid
and maximally stress-free: they can be termed ‘just rigid’. Our ultimate goal is to answer the question posed in the title:
when are symmetric pin-jointed frameworks isostatic? As a first step, the present paper provides a series of necessary con-
ditions obeyed by isostatic frameworks that possess symmetry, and also summarizes conjectures and initial results on suf-
ficient conditions.

Frameworks provide a model that is useful in applications ranging from civil engineering (Graver, 2001) and the study of
granular materials (Donev et al., 2004) to biochemistry (Whiteley, 2005). Many of these model frameworks have symmetry.
In applications, both practical and theoretical advantages accrue when the framework is isostatic. In a number of applica-
tions, point symmetry of the framework appears naturally, and it is therefore of interest to understand the impact of sym-
metry on the rigidity of the framework.

Maxwell (1864) formulated a necessary condition for infinitesimal rigidity, a counting rule for 3D pin-jointed structures,
with an obvious counterpart in 2D; these were later refined by Calladine (1978). Laman (1970) provided sufficient criteria for
infinitesimal rigidity in 2D, but there are well known problems in extending this to 3D (Graver et al., 1993).

The Maxwell counting rule, and its extensions, can be re-cast to take account of symmetry (Fowler and Guest, 2000) using the
language of point-group representations (see e.g., Bishop, 1973). The symmetry-extended Maxwell rule gives additional infor-
mation from which it has often been possible to detect and explain ‘hidden’ mechanisms and states of self-stress in cases where
the standard counting rules give insufficient information (Fowler and Guest, 2002, 2005; Schulze, 2008). Similar symmetry
extensions have been derived for other classical counting rules (Ceulemans and Fowler, 1991; Guest and Fowler, 2005).
. All rights reserved.
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In the present paper, we will show that the symmetry-extended Maxwell rule can be used to provide necessary condi-
tions for a finite framework possessing symmetry to be stress-free and infinitesimally rigid, i.e., isostatic. It turns out that
symmetric isostatic frameworks must obey some simply stated restrictions on the counts of structural components that
are fixed by various symmetries. For 2D systems, these restrictions imply that isostatic structures must have symmetries
belonging to one of only six point groups. For 3D systems, all point groups are possible, as convex triangulated polyhedra
(isostatic by the theorems of Cauchy and Dehn (Cauchy, 1813; Dehn, 1916)) can be constructed in all groups (Section
3.2), although restrictions on the placement of structural components may still apply.

For simplicity in this presentation, we will restrict our configurations to realisations in which all joints are distinct.
Thus, if we consider an abstract representation of the framework as a graph, with vertices corresponding to joints, and
edges corresponding to bars, then we are assuming that the mapping from the graph to the geometry of the framework
is injective on the vertices. Complications can arise in the non-injective situation, and will be considered separately
(Schulze, 2008).

The structure of the paper is as follows: Maxwell’s rule, and its symmetry-extended version, are introduced in Section 2,
where a symmetry-extended version of a necessary condition for a framework to be isostatic is given, namely the equisym-
metry of the representations for mechanisms and states of self-stress. In Section 3 the calculations are carried out in 2D, lead-
ing to restrictions on the symmetries and configurations of 2D isostatic frameworks, and in 3D, leading to restrictions on the
placement of structural components with respect to symmetry elements. In Section 4 we conjecture sufficient conditions for
a framework realized generically for a symmetry group to be isostatic, both in the plane and in 3D.

2. Background

2.1. Scalar counting rule

Maxwell’s rule (Maxwell, 1864) in its modern form (Calladine, 1978),
m� s ¼ 3j� b� 6; ð1Þ
expresses a condition for the determinacy of an unsupported, three-dimensional pin-jointed frame, in terms of counts of
structural components. In Eq. (1), b is the number of bars, j is the number of joints, m is the number of infinitesimal internal
mechanisms and s is the number of states of self-stress. A statically determinate structure has s ¼ 0; a kinematically deter-
minate structure has m ¼ 0; isostatic structures have s ¼ m ¼ 0.

The form of (1) arises from a comparison of the dimensions of the underlying vector spaces that are associated with the
equilibrium, or equivalently the compatibility, relationships for the structure (Pellegrino and Calladine, 1986).

Firstly, the equilibrium relationship can be written as
At ¼ f;
where A is the equilibrium matrix; t is a vector of internal bar forces (tensions), and lies in a vector space of dimension b; f is
an assignment of externally applied forces, one to each joint, and, as there are 3j possible force components, f lies in a vector
space of dimension 3j (this vector space is the tensor product of a j-dimensional vector space resulting from assigning a sca-
lar to each joint, and a three-dimensional vector space in which a 3D force vector can be defined). Hence A is a 3j� b matrix.

A state of self-stress is a solution to At ¼ 0, i.e., a vector in the nullspace of A; if A has rank r, the dimension of this null-
space is
s ¼ b� r: ð2Þ
Further, the compatibility relationship can be written as
Cd ¼ e;
where C is the compatibility matrix; e is a vector of infinitesimal bar extensions, and lies in a vector space of dimension b; d is
a vector of infinitesimal nodal displacements, there are 3j possible nodal displacements and so d lies in a vector space of
dimension 3j. Hence C is a b� 3j matrix. In fact, it is straightforward to show (see e.g., Pellegrino and Calladine, 1986) that
C is identical to AT. The matrix C is closely related to the rigidity matrix commonly used in the mathematical literature: the
rigidity matrix is formed by multiplying each row of C by the length of the corresponding bar. Of particular relevance here is
that fact that the rigidity matrix and C have an identical nullspace.

A mechanism is a solution to ATd ¼ 0, i.e., a vector in the left-nullspace of A, and the dimension of this space is 3j� r. How-
ever, this space has a basis comprised of m internal mechanisms and six rigid-body mechanisms, and hence
mþ 6 ¼ 3j� r: ð3Þ
Eliminating r from (2) and (3) recovers Maxwell’s Eq. (1).
The above derivation assumes that the system is three-dimensional, but it can be applied to two-dimensional frame-

works, simply replacing 3j� 6 by 2j� 3:
m� s ¼ 2j� b� 3: ð4Þ
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2.2. Symmetry-extended counting rule

The scalar formula (1) has been shown (Fowler and Guest, 2000) to be part of a more general symmetry version of Max-
well’s rule. For a framework with point group symmetry G,
3D : CðmÞ � CðsÞ ¼ CðjÞ � Cxyz � CðbÞ � Cxyz � CRxRyRz ; ð5Þ
where each C is known in applied group theory as a representation of G (Bishop, 1973), or in mathematical group the-
ory as a character (James and Liebeck, 2001). For any set of objects q;CðqÞ can be considered as a vector, or ordered
set, of the traces of the transformation matrices DqðRÞ that describe the transformation of q under each symmetry
operation R that lies in G. In this way, (5) may be considered as a set of equations, one for each class of symmetry
operations in G. Alternatively, and equivalently, each CðqÞ can be written as the sum of irreducible representations/
characters of G (Bishop, 1973). In (5) the various sets q are sets of bars b, joints j, mechanisms m and states of
self-stress s; Cxyz and CRxRyRz are the translational and rotational representations, respectively. Calculations using (5)
can be completed by standard manipulations of the character table of the group (Atkins et al., 1970; Bishop, 1973;
Altmann and Herzig, 1994).

The restriction of (5) to two-dimensional systems (assumed to lie in the xy-plane) is made by replacing Cxyz with Cxy and
CRxRyRz with CRz , as appropriate to the reduced set of rigid-body motions.
2D : CðmÞ � CðsÞ ¼ CðjÞ � Cxy � CðbÞ � Cxy � CRz : ð6Þ
Examples of the application of (5) and (6), with detailed working, can be found in Fowler and Guest (2000, 2002, 2005),
and further background, giving explicit transformation matrices, will be found in Kangwai and Guest (2000).

In the context of the present paper, we are interested in isostatic systems, which have m ¼ s ¼ 0, and hence obey the sym-
metry condition CðmÞ ¼ CðsÞ ¼ 0. In fact, the symmetry Maxwell equation (5) and (6) gives the necessary condition
CðmÞ � CðsÞ ¼ 0, as it cannot detect the presence of paired equisymmetric mechanisms and states of self-stress.

The symmetry-extended Maxwell equation corresponds to a set of k scalar equations, where k is the number of irreduc-
ible representations of G (the number of rows in the character table), or equivalently the number of conjugacy classes of G
(the number of columns in the character table). The former view has been used in previous papers; the latter will be found
useful in the present paper for deriving restrictions on isostatic frameworks.

2.3. The need for restrictions

That existence of symmetry typically imposes restrictions on isostatic frameworks can be seen from some simple general
considerations. Consider a framework having point-group symmetry G. Suppose that we place all bars and joints freely (so
that no bar or joint is mapped onto itself by any symmetry operation). Both b and j must then be multiples of jGj, the order of
the group: b ¼ �bjGj; j ¼ �jjGj. Can such a framework be isostatic? Any isostatic framework obeys the scalar Maxwell rule with
m� s ¼ 0 as a necessary condition. In three dimensions, we have b ¼ 3j� 6, and hence:
3D : �b ¼ 3�j� 6
jGj :
In two dimensions, we have b ¼ 2j� 3, and hence:
2D : �b ¼ 2�j� 3
jGj :
As �b and �j are integers, jGj is restricted to values 1, 2, 3 and 6 in 3D, and 1 and 3 in 2D. Immediately we have that if the point
group order is not one of these special values, it is impossible to construct an isostatic framework with all structural com-
ponents placed freely: any isostatic framework with jGj–1;3 (2D) or jGj–1;2;3;6 (3D) must have some components in spe-
cial positions (components that are unshifted by some symmetry operation).

In the Schoenflies notation (Bishop, 1973), the point groups of orders 1, 2, 3 and 6 are
jGj ¼ 1 : C1;

jGj ¼ 2 : C2;Cs;Ci;

jGj ¼ 3 : C3;

jGj ¼ 6 : C3h;C3;D3;S6:
Further restrictions follow from the symmetry-adapted Maxwell rules (5) and (6). In a hypothetical framework where all
bars and joints are placed freely, the bar and joint representations are
CðbÞ ¼ �bCreg; CðjÞ ¼ �jCreg:
where Creg is the regular representation of G with trace jGj under the identity operation, and 0 under all other operations. The
representations Cxyz and Cxy have trace 3 and 2, respectively, under the identity operation, and hence Eqs. (5) and (6) become
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3D : CðmÞ � CðsÞ ¼ 3�jCreg � �bCreg � Cxyz � CRxRyRz ;

2D : CðmÞ � CðsÞ ¼ 2�jCreg � �bCreg � Cxy � CRz ;
which can be written as,
3D : CðmÞ � CðsÞ ¼ 3�j� �b� 6
jGj

� �
Creg þ

6
jGjCreg � Cxyz � CRxRyRz

� �
;

2D : CðmÞ � CðsÞ ¼ 2�j� �b� 3
jGj

� �
Creg þ

3
jGjCreg � Cxy � CRz

� �
:

If we have arranged that our hypothetical framework has satisfied the scalar Maxwell rule, we are left with a ‘discrepancy
term’, given by
3D : CðmÞ � CðsÞ ¼ 6
jGjCreg � Cxyz � CRxRyRz

� �
;

2D : CðmÞ � CðsÞ ¼ 3
jGjCreg � Cxy � CRz

� �
:

Thus in both 2D and 3D, our hypothetical framework cannot be isostatic unless the rigid-body motions span a multiple of the
regular representation, when the discrepancy term will disappear. Within groups of the specified orders, this term disap-
pears only for: in 3D, fC1;Cs;Ci;C3;C3h;C3;S6g, and in 2D, fC1;C3g. Thus, for example, 3D frameworks of C2 or D3 symme-
try, with all structural components shifted by all symmetry operations, cannot be isostatic, even when they satisfy the scalar
Maxwell count: in both cases, evaluation of the discrepancy term shows that the hypothetical 3D framework would have a
totally symmetric mechanism and a state of self-stress that is antisymmetric with respect to 2-fold rotation.

Frameworks of higher symmetry, such as the icosahedral ðjGj ¼ 120 or 60Þ or cubic groups ðjGj ¼ 48;24 or 12Þ cannot
satisfy even the isostatic scalar Maxwell count without having structural components in special positions.

Thus, even this simple example shows that for many groups some restriction on positions of bars and points is imposed
by symmetry, and implies that symmetry adds extra necessary conditions for frameworks to be isostatic.

3. Derivation of conditions for isostatic frameworks

In order to apply (5) to any particular framework, we require, in addition to the standard Cxyz and CRxRyRz , a knowledge of
the bar and joint permutation representations: CðbÞ and CðjÞ. In other words, for each symmetry operation in G, we need to
determine the numbers of bars and joints that remain unshifted by that operation. It is necessary to perform this count only
once per conjugacy class.

Setting CðmÞ � CðsÞ to zero in (5) and (6), class by class, will give up to k independent necessary conditions for the frame-
work to be isostatic. We will carry out this procedure once and for all point groups, as there is a very limited set of possible
operations to consider. The two-dimensional and three-dimensional cases will be considered separately.

3.1. Two-dimensional isostatic frameworks

In this section we treat the two-dimensional case: bars, joints, and their associated displacements are all confined to the
plane (Note that frameworks that are isostatic in the plane may have out-of-plane mechanisms when considered in 3-
space.). The relevant symmetry operations are: the identity ðEÞ, rotation by 2p=n about a point ðCnÞ, and reflection in a line
ðrÞ. The possible groups are the groups Cn and Cn for all natural numbers n. Cn is the cyclic group generated by Cn, and Cn is
generated by a fCn;rg pair. The group C1 is usually called Cs.

All two-dimensional cases can be treated in a single calculation, as shown in Table 1. Each entry in the table is the trace
(character) of the appropriate representation (indicated in the left column) of the symmetry (indicated in the top line). Char-
acters are calculated for four operations: we distinguish C2 from the Cn operation with n > 2. Each line in the table represents
a stage in the evaluation of (6). Similar tabular calculations are found in Fowler and Guest (2000) and subsequent papers.
tions of characters for representations for the 2D symmetry-extended Maxwell Eq. (6).
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To treat all two-dimensional cases in a single calculation, we need a notation that keeps track of the fate of structural
components under the various operations, which in turn depends on how the joints and bars are placed with respect to
the symmetry elements. The notation used in Table 1 is as follows:

j is the total number of joints;
jc is the number of joints lying on the point of rotation (Cn>2 or C2) (note that, as we are considering only cases where all
joints are distinct, jc ¼ 0 or 1);
jr is the number of joints lying on a given mirror line;
b is the total number of bars;
b2 is the number of bars left unshifted by a C2 operation (see Fig. 1(a) and note that Cn with n > 2 shifts all bars);
br is the number of bars unshifted by a given mirror operation (see Fig. 1(b): the unshifted bar may lie in, or perpendicular
to, the mirror line).

Each of the counts refers to a particular symmetry element and any structural component may therefore contribute to one
or more count, for instance, a joint counted in jc also contributes to jr for each mirror line present.

From Table 1, the symmetry treatment of the 2D Maxwell equation reduces to scalar equations of four types. If
CðmÞ � CðsÞ ¼ 0, then
Fig. 1.
(a) C2 c
E : 2j� b ¼ 3; ð7Þ
C2 : 2jc þ b2 ¼ 1; ð8Þ
r : br ¼ 1; ð9Þ
Cn>2 : 2ðjc � 1Þ cos / ¼ 1; ð10Þ
where a given equation applies when the corresponding symmetry operation is present in G. Some observations on 2D iso-
static frameworks, arising from this set of equations are:

(i) Trivially, all 2D frameworks have the identity element and (7) simply restates the scalar Maxwell rule (4) with
m� s ¼ 0.

(ii) Presence of a C2 element imposes limitations on the placement of bars and joints. As both jc and b2 must be non-neg-
ative integers, (8) has the unique solution b2 ¼ 1; jc ¼ 0. In other words, an isostatic 2D framework with a C2 element
of symmetry has no joint on the point of rotation, but exactly one bar centered at that point.

(iii) Similarly, presence of a mirror line implies, by (9), that br ¼ 1 for that line, but places no restriction on the number of
joints in the same line, and hence allows this bar to lie either in, or perpendicular to, the mirror.

(iv) Deduction of the condition imposed by a rotation of higher order Cn>2 proceeds as follows. Eq. (10) with / ¼ 2p=n
implies
ðjc � 1Þ cos
2p
n

� �
¼ 1

2
ð11Þ
and as jc is either 0 or 1, this implies that jc ¼ 0 and n ¼ 3. Thus, a 2D isostatic framework cannot have a Cn rotational
element with n > 3, and when either a C2 or C3 rotational element is present, no joint may lie at the centre of rotation.

In summary, a 2D isostatic framework may have only symmetry operations drawn from the list fE;C2;C3;rg, and hence
the possible symmetry groups G are six in number: C1;C2;C3;Cs;C2;C3. Group by group, the conditions necessary for a 2D
framework to be isostatic are then as follows:

C1: b ¼ 2j� 3.
C2: b ¼ 2j� 3 with b2 ¼ 1 and jc ¼ 0, and as all other bars and joints occur in pairs, j is even and b is odd.
C3: b ¼ 2j� 3 with jc ¼ 0, and hence all joints and bars occur in sets of 3.
Cs: b ¼ 2j� 3 with br ¼ 1 and all other bars occurring in pairs. Symmetry does not restrict jr.
C2 σ

(a) (b) 
Possible placement of a bar with respect to a symmetry element in two dimensions, such that it is unshifted by the associated symmetry operation:
entre of rotation; (b) mirror line.
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C2: b ¼ 2j� 3 with jc ¼ 0 and b2 ¼ br ¼ 1. A central bar lies in one of the two mirror lines, and perpendicular to the other.
Any additional bars must lie in the general position, and hence occur in sets of 4, with joints in sets of 2 and 4. Hence b
is odd and j is even.

C3: b ¼ 2j� 3 with jc ¼ 0 and br ¼ 1 for each of the three mirror lines.

We consider whether these condition are also sufficient in Section 4.1.
Fig. 2 gives examples of small 2D isostatic frameworks for each of the possible groups, including cases where bars lie in,

and perpendicular to, mirror lines.

3.2. Three-dimensional isostatic frameworks

The families of possible point groups of 3D objects are: the icosahedral I;Ih; the cubic T;Th;Td;O;Oh; the axial
Cn;Cnh;Cn; the dihedral Dn;Dnh;Dnd; the cyclic S2n; and the trivial Cs;Ci;C1 (Atkins et al., 1970). The relevant symmetry
operations are: proper rotation by 2p=n about an axis, Cn, and improper rotation, Sn (Cn followed by reflection in a plane per-
pendicular to the axis). By convention, the identity E � C1, inversion i � S2, and reflections r � S1 are treated separately.

The calculation is shown in Table 2. Characters are calculated for six operations. For proper rotations, we distinguish E and
C2 from the Cn operations with n > 2. For improper rotations, we distinguish r and i from the Sn>2 operations. We exclude
from consideration the degenerate case of a single bar, and assume that the total number of joints is greater than three.

The notation used in Table 2 is

j is the total number of joints;
jn is the number of joints lying on the Cn axis;
jc is the number of joints (0 or 1) lying on the unique central point (if any). Such joints are unshifted by all operations;
jr is the number of joints lying on a given r mirror-plane;
(a) (b) 

(e)

(c)

(d.i)

(d.ii)

(f.i)

(f.ii)

Fig. 2. Examples, for each of the possible groups, of small 2D isostatic frameworks, with bars which are equivalent under symmetry marked with the same
symbol: (a) C1; (b) C2; (c) C3; (d) Cs � C1v; (e) C2v; (f) C3v . Mirror lines are shown dashed, and rotation axes are indicated by a circular arrow. For each of Cs

and C3v , two examples are given: (i) where each mirror has a bar centered at, and perpendicular to, the mirror line; (ii) where a bar lies in each mirror line.
For C2v , the bar lying at the centre must lie in one mirror line, and perpendicular to the other.
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b is the total number of bars;
bn is the number of bars unshifted by a Cn>2 rotation: note that each such bar must lie along the axis of the rotation (see
Fig. 3(a));
bnc is the number of bars unshifted by the improper rotation Sn>2: note that such bars must lie along the axis of the rota-
tion, and be centered on the central point of the group (see Fig. 4(a));
bc is the number of bars unshifted by the inversion i: note that the centre of the bar must lie at the central point of the
group, but no particular orientation is implied (see Fig. 4(b));
b2 is the number of bars unshifted by the C2 rotation: such bars must lie either along, or perpendicular to and centered on,
the axis (see Fig. 3(a) and (b));
br is the number of bars unshifted by a given r mirror operation (see Fig. 5(a) and (b)).

Again, each of the counts refers to a particular symmetry element, and so, for instance the joint counted in jc also contributes
to j; jn and jr.

From Table 2, the symmetry treatment of the 3D Maxwell equation reduces to scalar equations of six types. If
CðmÞ � CðsÞ ¼ 0, then
E : 3j� b ¼ 6; ð12Þ
r : br ¼ jr; ð13Þ
i : 3jc þ bc ¼ 0; ð14Þ
C2 : j2 þ b2 ¼ 2; ð15Þ
Cn>2 : ðjn � 2Þð2 cos /þ 1Þ ¼ bn; ð16Þ
Sn>2 : jcð2 cos /� 1Þ ¼ bnc; ð17Þ
where a given equation applies when the corresponding symmetry operation is present in G.
Some observations on 3D isostatic frameworks, arising from the above, are

(i) From (12), the framework must satisfy the scalar Maxwell rule (1) with m� s ¼ 0.
(ii) From (13), each mirror that is present contains the same number of joints as bars that are unshifted under reflection in

that mirror.
Cn

(a) 

(b) 

Fig. 3. Possible placement of a bar unshifted by a proper rotation about an axis: (a) for any CnP2; (b) for C2 alone.



(a)

(b) σ

Fig. 5. Possible placement of a bar unshifted by a reflection in a plane: (a) lying in the plane; (b) lying perpendicular to the plane.

Sn
i = S2

(a) (b) 
Fig. 4. Possible placement of a bar unshifted by an improper rotation about an axis: (a) for any SnP2; (b) for i ¼ S2.
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(iii) From (14), a centro-symmetric framework has neither a joint nor a bar centered at the inversion centre.
(iv) For a C2 axis, (15) has solutions
ðj2; b2Þ ¼ ð2; 0Þ; ð1;1Þ; ð0;2Þ:
The count b2 refers to both bars that lie along, and those that lie perpendicular to, the axis. However, if a bar were to lie
along the C2 axis, it would contribute 1 to b2 and 2 to j2 thus generating a contradiction of (15), so that in fact all bars
included in b2 must lie perpendicular to the axis.

(v) Eq. (16) can be written, with / ¼ 2p=n, as
ðjn � 2Þ 2 cos
2p
n

� �
þ 1

� �
¼ bn;
with n > 2. The non-negative integer solution jn ¼ 2; bn ¼ 0, is possible for all n. For n > 2 the factor ð2 cosð2p=nÞ þ 1Þ
is rational at n ¼ 3;4;6, but generates a further distinct solution only for n ¼ 3:

n ¼ 3

0ðj3 � 2Þ ¼ b3;
and so here b3 ¼ 0, but j3 is unrestricted.

n ¼ 4

j4 � 2 ¼ b4;
C4 implies C2
4 ¼ C2 about the same axis, and hence b4 ¼ 0, and j4 ¼ j2 ¼ 2.
n ¼ 6

2ðj6 � 2Þ ¼ b6;
C6 implies C3
6 ¼ C2 and C2

6 ¼ C3 about the same axis, and hence b6 ¼ b3 ¼ 0, and j6 ¼ j3 ¼ j2 ¼ 2.Thus bn is 0 for any
n > 2, and only in the case n ¼ 3 may jn depart from 2.

(vi) Likewise, Eq. (17) can be written, with / ¼ 2p=n, as
2 cos
2p
n

� �
� 1

� �
jc ¼ bnc;
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with n > 2. The integer solution jc ¼ 0; bnc ¼ 0, is possible for all n. For n > 2 the factor ð2 cosð2p=nÞ � 1Þ is rational at
n ¼ 3;4;6, but generates no further solutions:
Fig. 6.
polyhed
placing
n ¼ 3

�2jc ¼ b3c;
and so jc ¼ b3c ¼ 0.

n ¼ 4

�jc ¼ b4c;
and so jc ¼ b4c ¼ 0.

n ¼ 6

0jc ¼ b6c;
and b6c ¼ 0 but S6 implies S3
6 ¼ i and hence also jc ¼ 0.

(vii) For a framework with icosahedral (I or Ih) symmetry, the requirement that j5 ¼ 2 for each 5-fold axis implies that the
framework must include a single orbit of 12 vertices that are the vertices of an icosahedron. Similarly, for a framework
with a O or Oh symmetry, the requirement that j4 ¼ 2 implies that the framework must include a single orbit of 6 ver-
tices that are the vertices of an octahedron.

In contrast to the 2D case, in 3D the symmetry conditions do not exclude any point group. For example, a fully tri-
angulated convex polyhedron, isostatic by the Theorem of Cauchy and Dehn (Cauchy, 1813; Dehn, 1916) can be con-
structed to realize any 3D point group. Beginning with the regular triangulated polyhedra (the tetrahedron,
octahedron, icosahedron), infinite families of isostatic frameworks can be constructed by expansions of these polyhedra
using operations of truncation and capping. For example, to generate isostatic frameworks with only the rotational sym-
metries of a given triangulated polyhedron, we can ‘cap’ each face with a twisted octahedron, consistent with the rota-
tional symmetries of the underlying polyhedron: the resultant polyhedron will be an isostatic framework with the
rotational symmetries of the underlying polyhedron, but none of the reflection symmetries. An example of the capping
of a regular octahedron is shown in Fig. 6. Similar techniques can be applied to create polyhedra for any of the point
groups.

One interesting possibility arises from consideration of groups that contain C3 axes. Eq. (16) allows an unlimited
number of joints, though not bars, along a 3-fold symmetry axis. Thus, starting with an isostatic framework, joints
may be added symmetrically along the 3-fold axes. To preserve the Maxwell count, each additional joint is
accompanied by 3 new bars. Thus, for instance, we can ‘cap’ every face of an icosahedron to give the compound ico-
sahedron-plus-dodecahedron (the second stellation of the icosahedron), as illustrated in Fig. 7, and this process can be
continued ad infinitum adding a pile of ‘hats’ consisting of a new joint, linked to all three joints of an original icosa-
hedral face (Fig. 8). Similar constructions starting from cubic and trigonally symmetric isostatic frameworks can be
envisaged. Addition of a single ‘hat’ to a triangle of a framework is one of the Hennenberg moves (Tay and Whiteley,
1985): changes that can be made to an isostatic framework without introducing extra mechanisms or states of self-
stress.
(a) (b) 

A regular octahedron (a), and a convex polyhedron (b) generated by adding a twisted octahedron to every face of the original octahedron. The
ron in (b) has the rotation but not the reflection symmetries of the polyhedron in (a). If a framework is constructed from either polyhedron by
bars along edges, and joints at vertices, the framework will be isostatic.



(a) (b) 

Fig. 7. An icosahedron (a), and the second stellation of the icosahedron (b). If a framework is constructed from either polyhedron by placing bars along
edges, and joints at vertices, the framework will be isostatic. The framework (b) could be constructed from the framework (a) by ‘capping’ each face of the
original icosahedron preserving the C3v site symmetry.
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4. Sufficient conditions for isostatic realisations

4.1. Conditions for two-dimensional isostatic frameworks

For a framework with point-group symmetry G the previous section has provided some necessary conditions for the real-
ization to be isostatic. These conditions included some over-all counts on bars and joints, along with sub-counts on special
classes of bars and joints (bars on mirrors or perpendicular to mirrors, bars centered on the axis of rotation, joints on the
centre of rotation etc.). Here, assuming that the framework is realized with the joints in a configuration as generic as possible
(subject to the symmetry conditions), we investigate whether these conditions are sufficient to guarantee that the frame-
work is isostatic.

The simplest case is the identity group ðC1Þ. For this basic situation, the key result is Laman’s Theorem. In the following,
we take G ¼ fJ;Bg to define the connectivity of the framework, where J is the set of j joints and B the set of b bars, and we take
p to define the positions of all of the joints in 2D.

Theorem 1. (Laman, 1970) For a generic configuration in 2D, p, the framework GðpÞ is isostatic if and only if G ¼ fJ;Bg satisfies
the conditions:

(i) b ¼ 2j� 3;
(ii) for any non-empty set of bars B�, which contacts just the joints in J�, with jB�j ¼ b� and jJ�j ¼ j�; b� 6 2j� � 3.

Our goal is to extend these results to other symmetry groups. With the appropriate definition of ‘generic’ for symmetry
groups (Schulze, 2008), we can anticipate that the necessary conditions identified in the previous sections for the corre-
sponding group plus the Laman condition identified in Theorem 1, which considers subgraphs that are not necessarily sym-
metric, will be sufficient. For three of the plane symmetry groups, this has been confirmed. We use the previous notation for
the point groups and the identification of special bars and joints, and describe a configuration as ‘generic with symmetry
group G’ if, apart from conditions imposed by symmetry, the points are in a generic position (the constraints imposed by
the local site symmetry may remove 0,1 or 2 of the two basic freedoms of the point).

Theorem 2. (Schulze, in preparation-a) If p is a plane configuration generic with symmetry group G, and GðpÞ is a framework
realized with these symmetries, then the following necessary conditions are also sufficient for GðpÞ to be isostatic: b ¼ 2j� 3 and
for any non-empty set of bars B�; b� 6 2j� � 3 and

(i) for Cs : br ¼ 1;
(ii) for C2 : b2 ¼ 1; jc ¼ 0;

(iii) for C3 : jc ¼ 0.

For the remaining groups, we have a conjecture.

Conjecture 1. If p is a plane configuration generic with symmetry group G, and GðpÞ is a framework realized with these
symmetries, then the following necessary conditions are also sufficient for GðpÞ to be isostatic: b ¼ 2j� 3 and for any non-empty
set of bars B�; b� 6 2j� � 3 and



Fig. 8. A series of ‘hats’ added symmetrically along a 3-fold axis of an isostatic framework leaves the structure isostatic.

772 R. Connelly et al. / International Journal of Solids and Structures 46 (2009) 762–773
(i) for C2 : b2 ¼ 1 and br ¼ 1 for each mirror;
(ii) for C3 : jc ¼ 0 and br ¼ 1 for each mirror.

An immediate consequence of this theorem (and the conjecture) is that there is (would be) a polynomial time algorithm
to determine whether a given framework in generic position modulo the symmetry group G is isostatic. Although the Laman
condition of Theorem 1 involves an exponential number of subgraphs of G, there are several algorithms that determine
whether it holds in cjb steps where c is a constant. The pebble game (Hendrickson and Jacobs, 1997) is an example. The addi-
tional conditions for being isostatic with the symmetry group G trivially can be verified in constant time.

4.2. Conditions for isostatic 3D frameworks

In 3D, there is no known counting characterization of generically isostatic frameworks, although we have the necessary
conditions: 3j� b� 6 ¼ 0 and 3j0 � b0 � 6 P 0 for all subgraphs with j0 P 3 (Graver, 2001). There are, however a number of
constructions for graphs which are known to be generically isostatic in 3D (see e.g., Tay and Whiteley, 1985; Whiteley, 1991).
If we assume that we start with such a graph G, then it is natural to ask whether the additional necessary conditions for a
realization GðpÞ that is generic with point group symmetry G to be isostatic are also sufficient. In contrast to the plane case,
where we only needed to state these conditions once, for the entire graph, in 3D for all subgraphs G0 of G whose realizations
G0ðpÞ are symmetric with a subgroup G0 of G, with the full count 3j0 � b0 � 6 ¼ 0, we need to assert the conditions correspond-
ing to the symmetry operations in G0 as well. These conditions are clearly necessary, and for all reflections, half-turns, and 6-
fold rotations in G0, they do not follow from the global conditions on the entire graph (as they would in the plane). See Schu-
lze (in preparation-b) for details.

All of the above conditions combined, however, are still not sufficient for a three-dimensional framework GðpÞ which is
generic with point group symmetry G to be isostatic, because even if GðpÞ satisfies all of these conditions, the symmetry im-
posed by G may force parts of GðpÞ to be ‘flattened’ so that a self-stress of GðpÞ is created. For more details on how ‘flatness’
caused by symmetry gives rise to additional necessary conditions for three-dimensional frameworks to be isostatic, we refer
the reader to Schulze et al. (in preparation).
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